Skip Nav
Dr. Mark Lemmon
Mark Lemmon
(979) 458-8098
(979) 862-4466
Eller O&M 1205C
Texas A&M University
O&M Building, Room 1205C
Department of Atmospheric Sciences
MS 3150
College Station, Texas 77843


Ph.D., Planetary Sciences, University of Arizona

B.S., Physics, University of Washington

Mark Lemmon

Associate Professor

Research Interests

I am engaged in planetary exploration as a way to understand how atmospheres work in different conditions. Our exploration of the solar system uses robotic missions, astronomical observations, and laboratory and theoretical research. My focus is on missions of exploration and the theoretical analysis of data from those missions, supplemented by the occasional astronomical observation. I am involved in research on the atmospheres of several planets, but focus most of my attention on Mars and Saturn's moon, Titan.


NASA's Mars Science Laboratory is a robotic rover set to land on Mars in August 2012. Current student Keri Bean and I will help operate the rover, especially the cameras and the activities of the Environmental Science Theme Group, through the mission. Our work will focus on the use of remote sensing data to determine properties of the current atmosphere, such as dust content, heating effects of the dust, and processes that lift, transport, and settle the dust. I am a co-investigator on the MastCam and Descent Imager cameras.

I have participated in the development and operations of robotic Mars explorers for some time. I currently particpate in day-to-day operations of the Opportunity rover as an active member of the Athena science team, as I had done for the Spirit rover. I was the camera team lead for the Phoenixlander, and led the Phoenix Surface Stereo Imager team, for which I received NASA's Exceptional Public Service medal. My research supported by these mission activities includes the study of the nature and distribution of Martian atmospheric dust, as well as pursuing other scientific opportunities as they become available.


Titan is a moon with a dense, smoggy, and perhaps sometimes stormy atmosphere. My Titan research is generally aimed at a study of atmospheric aerosols. I use the Hubble Space Telescope (HST), ground-based observatories, and data from past planetary missions as inputs to a modeling effort studying the seasonal changes in startospheric and tropospheric aerosols.

Student opportunities

Students particpate significantly in operting exploration missions and in the analysis of data returned by those mission sto understand how other atmospheres work. Current opportunities include projects involving Mars Science Laboratory imaging atmopsheric dust; analysis of Phoenix data to study Martian dust as well as ice clouds and surface-atmosphere radiative interactions; and analysis of spacecraft data to understand Titan's hazes and meteorology.


I have been on the science team for Galileo Probe into Jupiter's atmsophere, the Imager for Mars Pathfinder, the (crashed) Mars Polar Lander, and the Huygens Probe to the surface of Titan. I have been a NASA selected Principal- or Co-Investigator for the Spirit and Opportunity Mars Exploration Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and Mars Trace Gas Orbiter, as well as for Hubble Space Telescope and Infrared Telescope Facility guest observing proposals.

Selected Publications

  • Dickinson, C., J.A. Whiteway, L. Komguem, J.E. Moores, and M.T. Lemmon, 2010. Lidar Measurements of Clouds in the Planetary Boundary Layer on Mars. Geophys. Res. L. 37, L18203. doi:10.1029/2010GL044317.
  • Moores, J.E., L. Komguem, J.A. Whiteway, M.T. Lemmon, C. Dickinson, and F. Daerden, 2011. Observations of Near-Surface Fog at the Phoenix Landing Geophys.Res. L. 38, L04203, doi:10.1029/2010GL046315.
  • Greeley, R., D. Waller, N. Cabrol, G. Landis, M.T. Lemmon, L. Neakrase, M.P. Hoffer, S. Thompson, P. Whelley, 2010. Gusev Crater, Mars: Observations of Three Dust Devil Seasons. J.Geophys.Res. 115, E00F02. doi:10.1029/2010JE003608
  • Drube, L., K. Leer, W. Goetz, H.P. Gunnlaugsson, M.P. Haspang, N. Lauritsen, M.B. Madsen, L.K.D. Sørensen, M.D. Ellehoj, M.T. Lemmon, R.V. Morris, D. Blaney, R.O. Reynolds, P.H. Smith, 2010. Magnetic and Optical Properties of Airborne Dust and Settling Rates of Dust at the Phoenix Landing Site. J. Geophys. Res. 115, E00E23. doi:10.1029/ 2009JE003419
  • Holstein-Rathlou, C., H. P. Gunnlauggson, J. P. Merrison, K. M. Bean*, B. A. Cantor, J. A. Davis, R. Davy, N. B. Drake, M.D. Ellehoj, W. Goetz, S.F. Hviid, C. F. Lange, S. E. Larsen, M. T. Lemmon, M. B. Madsen, M. Malin, J. E. Moores, P. Nornberg, P. H. Smith, L. K. Tamppari, and P. A. Taylor, 2010. Winds at the Phoenix Landing Site.J. Geophys. Res. 115, E00E18. doi:10.1029/2009JE003411.
  • Tamppari, L.K., D. Bass, B. Cantor, I. Daubar, C. Dickinson, D. Fisher, K. Fujii, H.P. Gunnlauggson, T.L. Hudson, D. Kass, A. Kleinböhl, L. Komguem, M.T. Lemmon, M. Mellon, J. Moores, A. Pankine, M. Searls, F. Seelos, M.D. Smith, S. Smrekar, P. Taylor, C. von Holstein-Rathlou, W. Weng, J. Whiteway, M. Wolff, 2010. Phoenix and MRO Coordinated Atmospheric Measurements. J. Geophys. Res. 115, E00E17. doi: 10.1029/ 2009JE003415.
  • Ellehoj, M.D., H.P. Gunnlaugsson, K.M. Bean*, B. A. Cantor, L. Drube, D. Fisher, B.T.Gheynani, A-M. Harri, C. Holstein-Rathlou, H. Kahanpää, M.T. Lemmon, M.B. Madsen, M. C. Malin, J. Polkko, P. Smith, L.K. Tamppari, P.A.Taylor, W. Weng and J. Whiteway, 2010. Convective vortices and Dust Devils at the Phoenix Mars Mission landing site. J. Geophys. Res., 115, E00E16. doi: 10.1029/ 2009JE003413.
  • Moores, J. E., M. T. Lemmon, P. H. Smith, L. Komguem, and J. A. Whiteway, 2010. Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager (SSI), J. Geophys. Res. 115, E00E08. doi:10.1029/2009JE003409
  • Whiteway, J.A., et al., 2009. Mars Water Ice Clouds and Precipitation. Science 325, 68-70. doi: 10.1126/science.1172344.
  • Smith, P.H., et al., 2009. Water at the Phoenix Landing Site. Science 325, 58-61. doi: 10.1126/science.1172339.
  • Tomasko, M.G, et al., 2005. Rain, winds, and haze; a close-up view from the descent to Titan’s surface. Nature,438, 765-778, doi:10.1038/nature04126.
  • Bell, J.F., III, M.T. Lemmon, T.C. Duxbury, M.Y.H. Hubbard, M.J. Wolff, S.W. Squyres, L. Craig, and J.M. Ludwinsky, 2005. Solar eclipses of Phobos and Deimos observed from the surface of Mars. Nature 436, 55-57.
  • Selsis, F., M.T. Lemmon, J. Vaubaillon, J.F. Bell, III, 2005. Extraterrestrial meteors: A Martian meteor and its parent comet. Nature 435, 581.
  • Lemmon, M.T., M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell III, S.W. Squyres, 2004. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity. Science 306, 1753-1756.
  • Smith, M.D., M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, and S.W. Squyres, 2004. First atmospheric science results from the Mars Exploration Rovers Mini-TES. Science 306, 1750-1753.
  • Bell, J.F., III, et al., 2004. Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum. Science 306, 1703-1709.
  • Squyres, S.W., et al., 2004. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars.Science 306, 1698-1703.
  • Bell, J.F., III, et al., 2004. Pancam Multispectral Imaging Results Spirit Rover at Gusev Crater. Science 305, 800-806.
  • Squyres, S.W., et al., 2004. The Spirit Rover's Athena Science Investigation at Gusev Crater, Mars. Science305, 794-799.
  • Johnson, J.R., W.M. Grundy, and M.T. Lemmon 2003. Dust deposition at the Mars Pathfinder landing site: Observations and modeling of near-infrared spectra. Icarus 163, 330-346.
  • Lemmon, M.T., P.H. Smith, and R.D. Lorenz 2002. Methane abundance on Titan, measured by the Space Telescope Imaging Spectrograph. Icarus 160, 375-385.
Geosciences TAMU Logo

Aggies can change the world. Geoscientists lead the way.